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Abstract-Uniqueness results are established for solutions of secondary creep problems, including the
effect of elastic strains, for a large class of domains subject to mixed boundary conditions, Two theorems
are proved, one for quasistatic creep and one for dynamic,

\, INTRODUCTION

In [1], uniqueness was established for positive solutions of a certain nonlinear integral equation
(eqn (1) of [1]) which governs the effective stress in internally loaded spherical and incom­
pressible cylindrical pressure vessels subject to primary or secondary transient creep. It had
been shown in [2, 3] that the solution of the latter boundary value problems can be reduced to
this single equation.

In the present paper we prove uniqueness theorems for domains and loadings far more
general than the above, however the case of primary creep has necessarily been excluded. It is
assumed that the total infinitesimal strain tensor is the sum of an elastic strain and a creep
strain, that the elastic strain-stress law is isotropic, and that the creep strain rate depends on the
deviatoric components of the stress through a simple generalization of Norton's power law (eqn
(2.2) below). The assumption of elastic isotropy has been made in order to be consistent with
the isotropy of the creep response and can be relaxed considerably.

Details of the boundary value problems and hypotheses are given in Section 2. In Section 3,
two theorems are proved. The first deals with the quasistatic case and establishes the
uniqueness of the strain field. In the compressible case, stresses are also shown to be unique.
For incompressible materials, we obtain uniqueness for the deviatoric components of the stress.
From this, it follows that the stress field itself is unique up to a spatially constant hydrostatic
pressure. Uniqueness of displacements follows provided that the part of the boundary on which
displacements are prescribed in nontrivial.

The second theorem, included for the sake of completeness, furnishes uniqueness for the
entire solution state: displacements, strains and stresses, for a dynamic creep problem in which
the inertia term is included in the equations of motion and initial displacements and velocities
are prescribed. Alternatively, one could prescribe displacement histories on (-00,0). The
method of proof for both theorems is based on Gronwall's inequality[4] and was suggested by
the work of Wheeler[5] on uniqueness of solutions for finite elastodynamics.

2, THE BOUNDARY VALUE PROBLEMS

Let R be a bounded region in three dimensional Euclidean space with closure R whose
boundary aR is smooth enough to permit application of the Divergence Theorem. The field
equations to be satisfied at all points x == (Xt, Xl, X3) in R and times t > 0 are the strain­
displacement relations;j:

1
Eii = '2 (Ui.i + Ui,i), (2.1)

tThis research was supported by the National Science Foundation under Grant MPS-75-07450,
tSubscripts have the range 1,2,3, repeated subscripts imply summation, ili; is the Kronecker delta, and for derivatives

we write V;,j" (o'vil/(otoxj).
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the strain-stress relations
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(2.2)

and either the quasistatic equations of motion

O'ij.j +bi =0, O'ij =O'ji,

or the dynamic equations of motion

O'ij.j +bi =pili, O';j =O'ji.

(2.3Q)

(2.3D)

Here Ui, Eij, O'ij denote, respectively, the components of the displacement vector, the
infinitesimal strain tensor, and the stress tensor. The constants II, E are Poisson's ratio and
Young's modulus respectively, and are subject to the restrictions

1
- 1< II :5 -, E > O.

2
(2.4)

(2.5)

F is a creep response function assumed to be continuously differentiable on [0,00). Its
argument, O'e, is called the "effective stress" and is defined by

2 3
O'e = "2SijSij

where Sij, the deviatoric components of the stress, are given by

(2.6)

In the special case in which the creep response is governed by the well-known Norton
power law [6] with exponent n, F becomes

F(O'e) = ~kO'/-1 (n 2: 2, k > 0).

The law (2.2) is interpreted as having the form

(2.7)

where Elt> denotes the "elastic" strains and Ell) the "creep" strains. In (2.3), bi stands for the
body force per unit volume and p for the mass density. It is assumed that p(x) > 0 on R.

For the quasistatic problem, the field equations (2.1), (2.2), (2.3Q) are assumed to hold in R
not only for t > 0 but also for t = O. For the dynamic problem (2.1), (2.2), (2.3D), we have
instead at t = 0 the initial conditions

Ui(X, 0) = cPi(X), Ui(X, 0) = !/Ji(X) (2.8)

for all x in R. To either the quasistatic or the dynamic problem we adjoin boundary conditions

Ui(X, t) = /;(x, t) (x in aRI, t > 0)

O'ijnj(x, t) = gi(X, t) (x in aR2, t > 0)

(2.9)

(2.10)

where aRI and aR2 are mutually exclusive subsets of aR whose union equals aR. In (2.10), ni(x)
are the components of the unit outward normal vector at point x on aR.
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3. THE UNIQUENESS THEOREMS

In order to eliminate needless repetition in the proofs of the uniqueness theorems, we shall
first establish the following inequality.

Lemma 1. Let l/Jlj, Ulj, and iTjj be continuous tensor fields on Rx [0,00) and let

(3.1)
where

'" 2 3" ""
0". ="2 SljS/j, etc.

Then, given T > 0, there exists a finite constant C(T) (which may depend on Uij, iT/j) such that
for any 0:5 7" :5 T and t ~ 0,

Proof. By the Mean Value Theorem,

IF(u.)slj - F(iT.)sljl = IF'(mu. - iT.]slj +F(iT.)s/jl

:5 M(T)lsiM'. + IF(iT.)sljl. (3.3)

Here {(x, t) is some intermediate value between u.(x, t) and iT.(x, t) and M(T) is a finite
constant. For second order tensor fields Vlj(X), Wij(X) on R, consider the inner product

Using the Schwarz and Minkowski inequalities corresponding to this inner product together
with (3.3), we obtain

Here we have used the fact that

Due to the assumed smoothness of iTlj, u/j and F, (3.2) follows immediately from the above
inequality.

Theorem 1. Let S == [UI, Eij, O"lj] be a continuously differentiable solution of the quasistatic
problem consisting of eqns (2.1), (2.2) and (2.3Q) together with the boundary conditions (2.9),
(2.10). Then the strain field Elj is uniquely determined. Furthermore, for v < 0.5, the stresses O"/j
are unique. For v = 0.5, the deviatoric components Sij are unique.

Proof. Let S== lUi, Elj, iTij] and S== lUi, Eij, Uij] be two continuously differentiable solutions of the
boundary value problem in question and define the difference state S as in (3.1). If (2.2) is
applied to the S quantities and then to S, the difference between the resulting two equations is

(3.4)
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In the incompressible case v = 1/2, (3.4) takes the form

(3.41)

We now multiply both sides of (3.4) by Uij(X, t) and integrate over R. Since iii =0 on aR I and
Uijnj =0 on aR2 for all t > 0, we can use (2.1), (2.3Q) and the Divergence Theorem to obtain

The same reasoning applied to (3.41) yields the identity

Taking first the case v < 1/2, we define

(3.6)

By (3.4) the proof for this case will be complete, once we show that v == 0 on [0, T] for any
finite T > O. For this, it suffices, due to Gronwall's lemma, to show that v satisfies an inequality
of the form

(3.7)

for some finite constant M = M(T).
To establish (3.7) for T > 0 given, we apply Lemma 1 to the second integral in (3.5) with the

choice !jJij == Uij to obtain

1 t 1/2

IfL[(1 + v)iT;ju;j - v(ukd](x, t) dx :5 C(T)v(t) i [L SijS;j(X, T) dX] dT (3.8)

for 0:5 t :5 T. Since

(3.9)

it follows from (3.8) that

(1-2v) 1t

-E- v2(1):5 C(T)v(1) 0 v(T)dT,

from which (3.7) is immediate.
In the case v = 1/2, we apply Lemma 1 to the second integral in (3.51) with !jJ;j == S;j to show

that the quantity

satisfies a Gronwall-type inequality. From (3.41) it is clear that w == 0 implies E;j == O. This
completes the proof.
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Theorem 2. Let S == lUi, Eij, Ujj] be a solution of the dynamic problem (2.1), (2.2) and (2.3D)
which is C2 in Rx [0,00) and satisfies the boundary conditions (2.9), (2.10) on aR x (0, 00) and the
initial conditions (2.8) in R. Then S is uniquely determined.

Proof. We shall discuss only the case v < 1/2. We again suppose the existence of two distinct
solutions, Sand S. With the notation of Theorem I, (3.4) again holds. For the dynamic case, we
differentiate (3.4) with respect to t, multiply both sides of the resulting equation by Uij and
integrate over R. Thus,

Since the difference state § satisfies homogeneous boundary conditions and the homo­
geneous equations of motion

we can apply the Divergence Theorem in the usual way to the integral on the left-hand side of
(3.10) to establish that

This fact enables us to put (3.10) in the form

Since (2.8) implies that

(3.12)

in R, it follows from (2.1) and the smoothness assumptions that

in R. Therefore, letting t -+ 0 in (3.4) and using the constitutive assumptions E > 0, -I < v < 1/2,
we see that

Therefore, if we integrate (3.11) from 0 to t, we obtain

L~a;iii(X, t) dx +2~L[(1 + V)UijUjj - v(ukd](x, t) dx

= - LLuij[F(ue)Sij - F(Ue)Sij](X, T) dx dT. (3.13)

We now apply Lemma I to the right-hand side of (3.13) with "'ij == Uij and t = T:S; T for some
prescribed T. It follows that

L~ajai(X, t) dx +2~L[(1 + v)UjjU;j - v(ukd](x, t) dx

I In U2

:s; C(T)L[fR UijO'ij(X, T) dX] [L SijS;j(X, T) dX] dT. (3.14)
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z(t) = L~ii;iii(X, t) dx +LiTih(x, t) dx.

The theorem will follow, provided we show that z == O. However it is easy to fashion a Gronwall
inequality for z(t) from (3.14) using (3.9) and the assumption 1/ < 1/2. This completes the proof.
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